- cross-posted to:
- [email protected]
- cross-posted to:
- [email protected]
Sweet, Sweet, Linear Algebra
I’ll just stick with phi, thank you
deleted by creator
According to the article the linear algebra algorithm has a running time of O(log n)
deleted by creator
According to the benchmark in the article it’s already way faster at n = 1000. I think you’re overestimating the cost of multiplication relative to just cutting down n logarithmically.
log_2(1000) = roughly a growth factor of 10. 2000 would be 11, and 4000 would be 12. Logs are crazy.
The article is comparing to the dynamic programming algorithm, which requires reading and writing to an array or hash table (the article uses a hash table, which is slower).
The naive algorithm is way faster than the DP algorithm.
It’s not that hard to check yourself. Running the following code on my machine, I get that the linear algebra algorithm is already faster than the naive algorithm at around n = 100 or so. I’ve written a more optimised version of the naive algorithm, which is beaten somewhere between n = 200 and n = 500.
Try running this Python code on your machine and see what you get:
import timeit def fib_naive(n): a = 0 b = 1 while 0 < n: b = a + b a = b - a n = n - 1 return a def fib_naive_opt(n): a, b = 0, 1 for _ in range(n): a, b = b + a, b return a def matmul(a, b): return ( (a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]), (a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]), ) def fib_linear_alg(n): z = ((1, 1), (1, 0)) y = ((1, 0), (0, 1)) while n > 0: if n % 2 == 1: y = matmul(y, z) z = matmul(z, z) n //= 2 return y[0][0] def time(func, n): times = timeit.Timer(lambda: func(n)).repeat(repeat=5, number=10000) return min(times) for n in (50, 100, 200, 500, 1000): print("========") print(f"n = {n}") print(f"fib_naive:\t{time(fib_naive, n):.3g}") print(f"fib_naive_opt:\t{time(fib_naive_opt, n):.3g}") print(f"fib_linear_alg:\t{time(fib_linear_alg, n):.3g}")
Here’s what it prints on my machine:
======== n = 50 fib_naive: 0.0296 fib_naive_opt: 0.0145 fib_linear_alg: 0.0701 ======== n = 100 fib_naive: 0.0652 fib_naive_opt: 0.0263 fib_linear_alg: 0.0609 ======== n = 200 fib_naive: 0.135 fib_naive_opt: 0.0507 fib_linear_alg: 0.0734 ======== n = 500 fib_naive: 0.384 fib_naive_opt: 0.156 fib_linear_alg: 0.112 ======== n = 1000 fib_naive: 0.9 fib_naive_opt: 0.347 fib_linear_alg: 0.152
Nice.
I have successfully stuck my foot in my own mouth.
How could we live without this?